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ABSTRACT 

This paper is a continuation of Part I. A decidable extension of model K4 that 
lacks the finite model property is described. It is not known whether there are 
extensions of B that are decidable and lack the finite model property. 

Introduction 

In [4] D. Makinson gave an example of  a normal,  finitely axiomatizable ex- 

tension of  T which lacks the finite model property. In [1] using methods of  [3] 

we constructed an extension of the system of Makinson which was decidable, 

finitely axiomatizable, normal,  and lacked the finite model property. In the proofs 

of  the above examples an essential use was made of the fact that the systems 

contain []  ¢ ~ ~b and fail to contain [ J¢  ~ [ ] O ¢ .  

In this paper we give an example of  a decidable, finitely axiomatizable extension 

of K4 without the finite model property. In the proof  we shall make essential 

use of  the fact that our system contains [:]¢ ~ [ ] [~b  and fails to contain O ¢  ~ ¢. 

Note  that any finitely axiomatizable normal extension of K4 is also finitely 

axiomatizable with modus ponens as the only rule. (We always include substi- 

tution). 

1. The system D,  

The following is an axiomatization of K4. 

(1) All truth functional tautologies. 
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(2) [7(q~ ~ 0) --+ (Dq5 --+ [70). 

(3) [ 7 ~ *  D[7~.  
(4) Modus ponens and substitution. 

(5) k 4 - - ,  F[7~. 

Since we have axiom (3) we can get K4 also by dropping out (5) and adding (6) 

and (7) below. 

(6) D(D(q5 --+ tp) --+ (D~b ~ [70)). 

(7) D(Dq5--+ DDq~). 

We may need to axiomatize the classical propositional calculus and add (8). 

(8) 0 A [70 for ff axiom of the classical propositional calculus. 

THEOREM 9. K4 may be finitely axiomatized with modus ponens (alon9 

with substitution). 

We now define D, .  

To get D, add (10) to any axiomatization of K4 with modus ponens and 

substitution as the only rules of inference: 

(10) [7([]3~ _+ E32~) _+ N([]2~ __, D~).  

It is easier to regard D, in the light of the following. 

THEOREM 11. Let A o be the set of all substitution instances of schema (10), 

then: A is a complete D,  theory if and only if  A is a complete K4 theory such 

that A ~_ A o. 

(11) holds for any other extension of K4 which does not have necessitation 

provided we take A o to be the set of all substitution instances of the additional 

axioms. 

LEMMA 12. ~([512~--+ Dq~) is not a theorem of O , .  

PROOF. Consider the following set of possible worlds: 

2 
1 
0 

- 1  
- 2  

--CO 
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where - o e R x  for  every x # - o o  ( - o o  being our  base structure) and xRy iff 

x < y for finite x and y. The semantics has no special intuitive meaning except 

that  it serves to prove (12). 

We now show that  (10) holds at - oo. Assume that  

so at some m 

[ [ ] ( [ [ ] 2 ( #  ~ [ i ] ~ ) ] - ~  = F 

= F 

and so [Q3t~ -~ DEt~]m_l = F and so 

[ ~ ( D 3 ¢  -~ D2@)]_oo = F .  

We thus conclude that  this is a model  of  all the theorems of  D , .  

N o w  to show that  our  sentence is no t  provable,  let [P]m = T i f f  (def)m >= 0 .  

Thus [ [ ] 2 p  ~ [ ] P ] - 2  = F and so [ [B(D 2 ~ p  D p ) ] - ~  = F .  

LEMMA 13. Any model of D, in which D([]2q~ ~ [-]q~) is false is not finite. 

PROOF. I f  our  sentence is false in the model,  then it is false at the base point  0. 

[E3([ ]2¢  -~ [ ] @ ] o  = r .  

Therefore there exists a Yl such that  ORy and [ [32~] ; ,  = T and [ N ~ ] ? ,  = F .  

Assume by induct ion that  there exist yl  ... y ,  such that  ORy~, ..., ORy, and that  

for each 1 _< i _ n we have 

(14) [l--li* 1~]y, T, ' = [D (~]r, = F. 

In  particular, we have that  

(15) [ [ ]"+l t~  -~ [B"~]y -- t and ORy,. 

Therefore by (10) for ~ = [ ] , - 1 ~  we have [ D  Q . + 2 ~  _~ D,+l~b)]o = F and 

therefore for some Y,+I such that  ORy,+ 1 we have [C]"+2q~]y.+, = T and 

= f .  

(16) We claim now that  all ym, m e e2 are different.This is so since [[]q~ ~ [ ]  [2~ 

holds. So if [-[Bm~]~ = T then [Dkq~]~ ---- T for all k ~ m.  

Thus we conclude the p roo f  o f  (13). 

PROBLEM 17. Find semantics for  D , .  

2. The system D# 

To get the system D~ extend any axiomatizat ion o f  (9) with 
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(lS) o ( [ D $  A ~ A/~ A D/~) -* o ( ~  , A oct A []/~) 

we know that (11) applies to D# as well. 

We now describe a semantics with respect to which D~, is complete. Our  models 

have a set (S, < )  of  possible worlds ( <  is our R) with the following properties 

(0 is base!). 

(19) < is transitive and not necessarily reflexive with 0 the first element. 

(20) Vy3z(0 < z < y AVu(z < u ~ y < u)). 

LEMMA 21. All theorems of D# hold in this semantics. 

PROOF. This is clearly a model of  K4. All we have to verify is that (18) holds 

in the base. 

Let [ o ( D x  Act A fl A [Zfl)]o = T. Then at some y such that 0 < y we have 

[r-lx Act A/~ A [3~] ,  = T. 

Let z be the point given by (20) and so [[~21/t i o ct i [~f l ]z  = T and so 

ro([~2~ A oct A [Bfl)]o = T. 

THEOREM 22. D~ is complete for this semantics. 

PROOF. Let A be a complete D# theory. By (11) we can regard A as a complete 

K4 theory such that every substitution instance of (18) is in A. Now we may 

continue as in the completeness proof  for K4. Let S be the set of  all K4 complete 

theories such that 

(23) A ~ S.  

(24) Whenever ® e S and ,-, QO c ® then for some 0~ ~ S we have,-, ~ e G ° 

and for all ~,V-]ct ~®-~  ct~®~. 

Define 

(25) ® < ® ' i f f ( d e f )  f o r a l l c t D ~ , ~ O ~ a ~ ® ' .  

(26) Now it is known that < is transitive and that if we define [P]e = T 

iff (def). p E ® for any propositional variable p and any ® we get for all q~, q~ ~ ® 

iff [~b]o = T a n d  thus (S, < ,A)  is a K4-model of  A. 

All this is well known [4-]. We will now show that (S, < ,  A) fulfills the con- 

ditions of  our semantics ((19), (20)). 
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We must be careful since we do not have necessitation. In K4 we do have 

necessitation and so the construction (23)-(27) can be carried out. 

LEMMA 28. Let A < 19, then the following set is K4 consistent: 

PROOF. Assume otherwise then 

K4 [- 61 A "'" A 6, ~ ,-,( o al A "'" A o ~k A [~2el A "'" A [~]2~]m A [~fll A 

• "" A D / % )  

K4 I- A~i -~ (I-12 A ¢~ A []  A ~ -* V " o ~i) 

K4 1- A ~  --* (I-12 A e~ A []  A / ~  "-* []  " A ~ ) .  

We now claim that 

(29) D([I] 2 A e ~ A  []  Afl~--* []  ~ A @ e A .  

This is true since we have necessitation in K4 and so 

K4 k [ ]  A6, ~ N ( [ ]  2 A e t A  [] A fl~ --* ISl~ A @  

and since A is a complete K4 theory and [ ]  A 6i e A we get our result. 

Now call e = Ae~, fl = Afl~, and ~ = A~,. So we have that fl A [33 

A [ ]  e A ~ E ® and therefore since-A < 19 we get that 

o ({ZI3Afl A [ ] e  A ~ ) e A .  

But A is not an ordinary K4 theory but one which contains every substitution 

instance of (18) and so 

0 (~ f l  A D2e A o ~)e A  

or in other words 

or  

,-,D ,-,(D3 A D2e A o~)~A 

which contradicts 29. 

Now to continue the completeness proof, extend the set of (28) to a complete 

K4 theory ®#.  By the definition of S,  ®~ e S. 

LEMMA 30. 

(32) A < O # < ®  

(32) ® ~ < F ~ O = F  or ® < F .  
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PROOF. (31) holds since by (28) all<> e for e~6 )  and all (5 for [ ] 6 ~ A  are in 6)3. 

Now to prove (32), assume that 6)# < F ,  F ~ 6) and 6) g F .  

Oe 

So for some e,t/ we have e e F ,  ~ ~ e O ,  [Bt/~O, ~ t / E F .  Now consider fl 

= ~  V " ~ .  We have [Bfl /~f le  O ,  so by construction we must have that 

D/? ~ Oe and so fl ~ F since 6)# < F ,  but this is a contradiction. 

Thus (S, < ,  A) fulfills our requirements and the completeness proof  is con- 

cluded. 

LEMMA 33. (~((~2(~ __~ []qS) is not a theorem of  D#. 

PROOF. The model given in (12) is also a model of D#. 

COROLLARY 34. D# lacks the finite model property. 

3. Decidability of D e 

To show that D e is decidable we shall use a theorem of M. O. Rabin [2-1, [5,1. 

We assume familiarity with [1], in particular with the construction following 

Lemma 26 and with §4. 

Our first step is to give a tree semantics to De; we shall do this by performing 

the construction in the completeness proof  of the last section more carefully. 

Now let A be a complete K4 theory which contains every substitution instance 

of D#. We shall construct a tree of theories. 

Stage O. Let A stand at the base of the tree. Denote the base by 0 and write 

6)(0) = A. In the later stages of the construction x, y will range over elements 

of the tree and 6)(x), 6)(y) will denote the theories standing at a point x or y of 

the tree. 

We use successor functions SOS1"" and one additional successor r(x).  

Stage 1. For  every ,,~ D~/e A construct A ~ (as in 24) and make them SoS 1 ... 

successors of 0. Thus 6)(sin(0)) is some theory A ~ . 

Stage 2. For  every 6)(x) constructed in stage 1 form all 6)(x) ~ and make 

them SoS1 "" successors of O(x).  In addition to this since we have A < 6)(x), 
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we know that ®(x)# exists (by (28)) and that A<  ®(x)# < ®(x) by (31) and (32). 

We thus may take ®(x)# and make it the r(x) successor of  x ,  and so 

®(r(x)) = (®(x)),~, Furthermore by (28)again we have that ®(x)#,~ exists (since 

A < (®(x))~ holds) and by (32) we know that ®(x)# is the only immediate suc- 

cessor of  ®(x)#~. 

Stage n + 1. For  every ®(x) constructed in stage n for x being an s,, successor 

for some m continue as in stage 2. For  x which is an r(y) construct only 

®(x)~ = ®(r(y))~ and let it stand at the point r(x) = r(r(y)). We now note that 

in the course of  construction we get a tree with the following properties: 

(35) 0 has no r-successors. 

(36) every x ~ 0 has unique r successor r(x) which has no s-successors. 

(37) ®(x) < ®(y) whenever there exists a finite set C of points such that  x ~ C 

and y ~ C and C is linearly ordered by the transitive closure of  s-successorship. 

This is true because always ®(x) < ®(s,,(x)) by construction and D ,  k []~b ~ [] •q~ 

(38) 0(0)  = A < ®(r(x)) for any x.  

(39) I f  ~D~kEO(sm(X)) then for some n, 

~ 0 ~ O(s . ( sm(x) ) ) .  

(40) Now let ,-, DO ~O(r(x)),  since O(r(x)) is O(x),~ we cannot have that 

O A NO e O(x) since then DO would be in O(r(x)) and so either ~ O  e O(x) or 

~ N 0  e O ( x ) .  

We now define < on the tree. 

(41) x < y iff the following: 

Case a. x ¢ 0 and is not an r-successor. Then we let x < y iff y is " a b o v e "  

x using sn-successorship only. 

Case b. x ¢ O b u t  x i s  an r successor. T h e n x < y i f f w e c a n g o  back by 

r-successorship to the unique first z which is not an r-successor and then z < y 

in the sense of Case a. z is unique below x.  See also (36). 

Case e. x = 0 .  0 i s  < of a n y y .  

Case d. x is obtained f rom y by taking r-successor i.e. x = r~(y). 

].,EMMA 42. This definition of < along with the semantics is expressible 

in the monadic tree language ([1], [-2]) and therefore the logic thus defined is 

decidable. 



Vol. 10, 1971 M O D A L  A N D  TENSE LOGICS II 503  

All we have to show now is that this tree-semantics characterizes D e . 

LEMMA 43. < is a transitive relation on our tree that fulfills (20). 

PROOF. It is clear that < is transitive (note case d in (41)). 

To show that (20) is fulflled, let 0 < z, then of course 0 < r(x) < x by definition. 

And since r(x) has no other successor then r(r(x)) by case ~b a n d  d, the only 

y's such that r(x) < y is x itself or a z such that x < z by definition. 

LEMMA 44. Let p be a propositional variable, define [p]~ = T i f f  (def.) 

p ~ ®(x), then we have for every ~ [q~']~ = T i f f  ~ ~ ®(x).  

PROOF. This follows from (37), (38), (39), (40) and the definition(41) of  < .  

(45) We thus conclude that D# is complete for this tree semantics. 

TrIEOREM 46. D~, is a decidable, finitely axiomatizable, extension of K4 

which lacks the finite model property. 

PROOF. By (42) and (45). 
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